NeoSilicon based nanoelectromechanical information devices

Shunri Oda

Quantum Nanoelectronics Research Center Tokyo Institute of Technology

TOKYO INSTITUTE OF TECHNOLOGY

Collaboration

Southampton University: H. Mizuta, Y Tsuchiya Cambridge University: W.I. Milne Imperial College: Z. Durrani Hitachi: T. Shimada, T. Arai, S. Saito Tokyo Univ. A & T: N. Koshida Tokyo Institute of Technology: K. Uchida, T. Kodera, T. Ishikawa, T. Nagami, G. Yamahata, J Ogi

Funding

JST-CREST, SORST JSPS-Kakenhi

Top-down & bottom-up Si nanoelectronics

NeoSilicon

Si quantum dots with the diameter < 10 nm and strong interdot interactions

E_{k1}

Dot diameter (nm)

0.1

E_{k2}

30nm

- Bandgaps are determined by nanocrystal size due to quantum effects.
- Conductivity is determined by tunneling.
- High-efficiency light emission
- High-efficiency electron emission
- Coupled quantum dots create new functions

Unique transport phenomena

A variety of new applications

Outline

- Dot Assembly T. Ishikawa, Y. Nakamine
- NEMS Memory T. Nagami
- Nano-bridge Transistors J. Ogi

• Coupled Quantum Dots G. Yamahata

Fabrication of Nanocrystalline Si

Si Quantum dots formed in VHF Plasma Cell Low-Temperature Processes

- SiO₂ Si (111)

10nm

Spherical Single crystal covered by natural oxide.

Single electron devices, high efficiency PL, electron emission.

Pursuing Excellence

Shunri Oda

TOKYO INSTITUTE OF TECHNOLOGY

Fabrication of Nanocrystalline Si

Low-temperature crystal growth. Plasma cell at 100°C. Substrate unheated.

Shunri Oda

TOKYO TIECH Pursuing Excellence

TOKYO INSTITUTE OF TECHNOLOGY

Silicon Nanocrystal Deposition: Size Control

Silicon Nanocrystal Deposition: Ar Dilution

Ar dilution enhances deposition rates.

Silicon Nanocrystal Deposition: Ar Dilution

Silicon Nanocrystal: Surface Control

ΤΟΚ

Pursuing Excellence

Surface Properties Control In *situ Oxidation/ Nitridation* Controlled formation of tunnel barriers and proper passivation of dangling bonds.

TOKYO INSTITUTE OF TECHNOLOGY

NeoSilicon Fabrication & Integration

2. Combined with fine alignment technology in EB lithography

Y. Kawata et al., Jpn. J. Appl. Phys. 46, 4386-4389 (2007).

NeoSilicon Fabrication & Integration

2. Application of Langmuir-Blodgett method to SNDs

Langmuir-Blodgett method

Succeeded in formation of 2D array of surface modified SiND but not the whole area of the chip

Area density ~ $7.22 \times 10^{11} \text{ dots/cm}^2$

Surface modification of Si nanocrystals

Modification by silane coupling agent (HMDS: Hexamethyldisilazane)

Large area 2D array of SiND by LB method

2D array of nc-Si dots by LB method for 5 x 5 μ m²

Optimized Si nano ink

2D array of nc-Si dots by LB method for the whole area of 10 x 10 mm² chip

Ē

3 µm

Printable Si quantum dots using nano Si ink

Printed Silicon

Thin-film transistor fabricated by printing technology

Kovio, Inc.,

Prof. T. Shimoda, JAIST

Reduction of environmental load

Printing technology to assemble nano dots

Dot Assembly: Summary and Conclusion

- Fabrication of monodispersed Si nano dots
- Substitutional impurity doping in Si nano dots
- 2D array of Si dots by LB and dip-coating
- Surface modification plays key roles in assembly and electron transport.
- Si nanodots in solution are promising for TFTs and photovoltaics.

P-6

P-7

P-8

NEMS integrated into Si nanodevices

Fusion of NEMS & nano CMOS / SET may lead to extended device performance and even novel functionalities.

MEMS / NEMS - MOSFET hybrid devices

Si-based bistable FG nonvolatile NEMS memory

NEMS memory: Operation principle

Test beam structure fabrication

SEM image of a beam

Naturally upward-bent bridge structure observed

Release of stress at Si/SiO₂ interface after undercut

Electrical switching of the beam

Mechanical bistability of a self-buckling beam

Fabrication of FG with SiNDs

Fabrication of FG with SiNDs

Self-buckling FG with SiNDs

2D simulation of NEMS memory

Steady state analysis of NEMS memory

Floating gate can be switched by applying gate voltage.

Drain current changes by position of floating gate.

Simulated structures

Beam displacement and drain current characteristics

Memory property changes by scaling

Switching voltage decreases with size reduction. Current ratio is maintained $10^5 \sim 10^6$ until L = 100 nm.

Transient simulation for P/E time estimation

Transient response and switching time

Estimation of energy consumption

Estimating energy consumption from total energy

 $E_{sum} = E_m + E_k + E_d + E_e + E_R$

Mechanical energy

$$E_m = \int_V \frac{1}{2} \varepsilon \cdot \sigma dV = W \times \int_S \frac{1}{2} \varepsilon \cdot \sigma dS$$

 σ : stress ϵ : strain

Kinetic energy

$$E_k = \int_V \frac{1}{2} \rho \, \mathbf{v}^2 dV = W \times \int_S \frac{1}{2} \rho \, \mathbf{v}^2 dS$$

Electrostatic energy

$$E_e = \int_V \frac{1}{2} \mathbf{E} \cdot \mathbf{D} dV = W \times \int_S \frac{1}{2} \mathbf{E} \cdot \mathbf{D} dS$$

Damping loss $E_{d} = \int_{V} \int_{0}^{t} \mathbf{F}_{d} \cdot \mathbf{v} dt dV$ $= W \times \int_{S} \int_{0}^{t} \left(\alpha \rho \, \mathbf{v}^{2} + \beta \, \frac{\partial \sigma}{\partial t} \cdot \frac{\partial \varepsilon}{\partial t} \right) dt dS$

α: mass damping factorβ: stiffness damping factor

Charging loss $E_R = E_e(t) - E_e(0)$

Switching energy variation by scaling

NEMS Memory: Conclusion

- We have performed numerical simulation of NEMS memory devices featuring mechanical bi-stability as a memory node.
- Memory performances enhance with decreasing suspended floating gate length L from 1000nm to 100nm, where switching voltage of 2.5V, switching speed of 15ns, and switching energy of 0.2fJ are projected.
- However, at 50nm, memory window collapses in this device structure. Although not suitable for ultra large scale integration, the fast and ultra low power NEMS memory, which does not require current flow for switching, may find suitable application in mobile terminals.
- Alternative structure, e.g., CNT, may extend scalability.

NEMSET: a suspended QD free from substrate

Reduced self-capacitance

Acoustically isolated from substrate

Coulomb oscillation observable at T > 100 K Unintentionally formed dot(s) included

J. Ogi, Y. Tsuchiya, S. Oda and H. Mizuta, Microelectronics Eng. **85**, 1410 (2008)

NEMSET : suspended double QDs (SDQDs)

H. Mizuta, Silicon Nanoelectronics WS, Kyoto, June, 2009

Signature of strongly-coupled SDQDs

J. Ogi, *T. Ferrus, Y. Tsuchiya, K. Uchida, D. A. Williams, S. Oda and H. Mizuta,* Silicon Nanoelectronics WS, Kyoto, June, 2009

Bias triangle for a suspended DQDs

J. Ogi, T. Ferrus, T. Kodera, Y. Tsuchiya, K. Uchida, D. A. Williams, S. Oda and H. Mizuta in press for Jpn. J. Appl. Phys. (2010)

Inelastic tunnelling via slab phonons

J. Ogi, T. Ferrus, T. Kodera, Y. Tsuchiya, K. Uchida, D. A. Williams, S. Oda and H. Mizuta in press for Jpn. J. Appl. Phys. (2010)

Electron transport in the Si multiple quantum dots

•Electrostatic and tunnel coupling

•Interplay between the orbit, valley and spin degree of freedom

ΤΟΚ

Pursuing Excellence

Silicon multiple quantum dot array device

SOI wafer

SOI: 40nm, BOX (SiO₂): 200nm Doping: P (~1 × 10¹⁹cm⁻³)

Dry Etching (ECR-RIE)

EB Lithography

Thermal Oxidation $(1000^{\circ}C)$ (Followed by Al bonding pad)

ΤΟΚΥΟ ΤΕCH

Pursuing Excellence

Shunri Oda

TOKYO INSTITUTE OF TECHNOLOGY

SEM Image of 4 QDs System

Scanning microscope image of the device

ΤΟΚΥΟ

Pursuing Excellence

TOKYO INSTITUTE OF TECHNOLOGY

Charge stability diagram

$I_{T1} \sim I_{T4} - (V_{G1}, V_{G4})$ characteristics $(V_{T1} \sim V_{T3} = -6 \text{ mV}, V_{T4} = 0 \text{ mV})$

Additional small QD

Additional small QD

Mechanism: PADOX (Pattern-Dependent Oxidation)

T2

DOham

QD

15

OD

Øk

30

CL5

Equivalent circuit model

Experiment vs equivalent circuit simulation

Electron transport through TQDs

Simulated stable electron numbers in TQDs

TOKYO INSTITUTE OF TECHNOLOGY

Higher order electron tunneling

-0.2

- •3rd order tunneling process I⁽³⁾
- •Two successive 2^{nd} order tunneling $I^{(2 \times 2)}$

Investigation of a Pauli spin blocade in controlled pure Si DQDs and its leakage current

Lithographically-defined Si DQDs

- •The DQD is defined by 3 tunnel barriers at 3 constricted regions due to the quantum size effects
- •There are five side gates to control the potentials of the DQD and the inter-dot tunnel coupling
- •Poly-Si top gate induces carriers in Si layer

G. Yamahata et al.: Appl. Phys. Express. 2, 095002 (2009)

Silicon layer

Buried oxide (SiO₂: 400 nm)

Silicon substrate

Initial wafer: Si on insulator (~60 nm)

Control of the thickness by thermal oxidation

Patterning of a DQD and side gates

Electron beam lithography followed by reactive ion etching with Cl_2 gas

Formation of gate oxides

Thermal oxidation (30 min at 1000 $^{\circ}$ C) and LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~10²⁰ cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Side Gates

DQD region

Side Gates

Initial wafer: Si on insulator (~60 nm)
Control of the thickness by thermal oxidation
Patterning of a DQD and side gates
Electron beam lithography followed by
reactive ion etching with Cl₂ gas
Formation of gate oxides
Thermal oxidation (30 min at 1000 °C) and
LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~10²⁰ cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Gate oxide

(Actual thickness of the gate oxide is thinner than that in the schematic image.)

<u>Initial wafer: Si on insulator (~60 nm)</u> Control of the thickness by thermal oxidation

Patterning of a DQD and side gates

Electron beam lithography followed by reactive ion etching with Cl₂ gas

Formation of gate oxides

Thermal oxidation (30 min at 1000 $^{\circ}$ C) and LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~10²⁰ cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Initial wafer: Si on insulator (~60 nm)

Control of the thickness by thermal oxidation

Patterning of a DQD and side gates

Electron beam lithography followed by reactive ion etching with Cl_2 gas

Formation of gate oxides

Thermal oxidation (30 min at 1000 $^{\circ}$ C) and LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~10²⁰ cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Initial wafer: Si on insulator (~60 nm)

Control of the thickness by thermal oxidation

Patterning of a DQD and side gates

Electron beam lithography followed by reactive ion etching with Cl_2 gas

Formation of gate oxides

Thermal oxidation (30 min at 1000 $^{\circ}$ C) and LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~ 10^{20} cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Initial wafer: Si on insulator (~60 nm)

Control of the thickness by thermal oxidation

Patterning of a DQD and side gates

Electron beam lithography followed by reactive ion etching with Cl_2 gas

Formation of gate oxides

Thermal oxidation (30 min at 1000 $^{\circ}$ C) and LPCVD (thickness: ~35+90 = 125 nm)

Formation of poly-Si top gate

LPCVD (thickness: ~200 nm, P: ~10²⁰ cm⁻³) Photo lithography, Plasma etching

Formation of source (S) and drain (D)

Fabrication results

SEM image of the Si DQD

Top gate (TG)

Induce carriers to the Si DQD with constant positive voltages Side gates L & R

Modulate the electrochemical potentials of the left & right QDs <u>Side gate C</u>

Tune the tunnel coupling between left & right QDs

Measurement setup (Marcus group in Harvard University) •³He refrigerator with a base

temperature of 250 mK

•DC measurements with voltage sources, DACs, current

preamplifiers, and digital multi-

meters

Charge stability diagram

V_R(V)

Integration of QD and charge sensor SET

 SET charge sensor is useful for detection of a few electrons in quantum dots.

Observation of a single electron state

Conclusion

Integrated NeoSilicon

high-on/off transistors, photovoltaic

NEMS Memory

ultralow-power, very long retention time

Nano-bridge Transistors

nano-phonon, emerging research field

Coupled Quantum Dots

Pauli spin blockade

Shunri Oda

ΤΟΚ

Pursuing Excellence

